Fungi from geothermal soils in Yellowstone National Park.
نویسندگان
چکیده
Geothermal soils near Amphitheater Springs in Yellowstone National Park were characterized by high temperatures (up to 70 degrees C), high heavy metal content, low pH values (down to pH 2.7), sparse vegetation, and limited organic carbon. From these soils we cultured 16 fungal species. Two of these species were thermophilic, and six were thermotolerant. We cultured only three of these species from nearby cool (0 to 22 degrees C) soils. Transect studies revealed that higher numbers of CFUs occurred in and below the root zone of the perennial plant Dichanthelium lanuginosum (hot springs panic grass). The dynamics of fungal CFUs in geothermal soil and nearby nongeothermal soil were investigated for 12 months by examining soil cores and in situ mesocosms. For all of the fungal species studied, the temperature of the soil from which the organisms were cultured corresponded with their optimum axenic growth temperature.
منابع مشابه
Processes Governing Arsenic Geochemistry in the Thermal Waters of Yellowstone National Park
Yellowstone National Park, USA, has more than 10,000 thermal features throughout a land area of 2.2x10 acres (just short of a million hectares). These characteristics make it unique among the world’s geothermal areas and, consequently, it has been the subject of numerous geological, geochemical, and ecological studies. Past and current research related to arsenic in the thermal waters of Yellow...
متن کاملHeat-tolerant flowering plants of active geothermal areas in Yellowstone National Park.
A broad survey of most of the major geyser basins within Yellowstone National Park (Wyoming, USA) was conducted to identify the flowering plants which tolerate high rhizosphere temperatures (> or = 40 degrees C) in geothermally heated environments. Under such conditions, five species of monocots and four species of dicots were repeatedly found. The predominant flowering plants in hot soils (>40...
متن کاملSoil microbial community structure across a thermal gradient following a geothermal heating event.
In this study microbial species diversity was assessed across a landscape in Yellowstone National Park, where an abrupt increase in soil temperature had occurred due to recent geothermal activity. Soil temperatures were measured, and samples were taken across a temperature gradient (35 to 65 degrees C at a 15-cm depth) that spanned geothermally disturbed and unimpacted soils; thermally perturbe...
متن کاملArsenite-oxidizing Hydrogenobaculum strain isolated from an acid-sulfate-chloride geothermal spring in Yellowstone National Park.
An arsenite-oxidizing Hydrogenobaculum strain was isolated from a geothermal spring in Yellowstone National Park, Wyo., that was previously shown to contain microbial populations engaged in arsenite oxidation. The isolate was sensitive to both arsenite and arsenate and behaved as an obligate chemolithoautotroph that used H(2) as its sole energy source and had an optimum temperature of 55 to 60 ...
متن کاملRole of the terrestrial subsurface in shaping geothermal spring microbial communities.
In this study, we explored the possibility that dispersal from terrestrial subsurface sources 'seeds' the development of geothermal spring microbial assemblages. We combined microscopy and culture-independent molecular approaches to survey the bacterial diversity of spring source waters in Yellowstone National Park, Lassen Volcanic National Park, and Russia's Kamchatka peninsula. Microscopic an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 65 12 شماره
صفحات -
تاریخ انتشار 1999